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Abstract

A multi-scale model for the gas–liquid–solid three-phase fluidized beds is developed on the basis of the principles of the EMMS model. For
this purpose, the flowing structure in the gas–liquid–solid system is divided into five phases and considered under different spatial scales: a
solid–liquid phase describing the micro-scale interaction between solid particles and liquid, a gas phase, a bubble wake phase and two inter-phases
that, respectively, describe the meso-scale interaction of the dispersed bubbles and bubble wakes with the surrounding liquid–solid pseudo-
homogeneous suspension. In order to obtain the steady state of such a system with eight unknowns, in addition to seven mass and momentum
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onservation conditions and an inequality constraint for the mean bubble diameter, the stability conditionNst → min is used.
The model is solved and checked with the experimental data available in several references which cover a broad range of operating con

he conventional expanded fluidized bed to the circulating fluidized bed, indicating that the model is capable of describing the global hydr
f the complex flow in the three-phase system with acceptable accuracy.
2005 Elsevier B.V. All rights reserved.

eywords: Gas–liquid–solid; Three-phase fluidization; Multi-scale method; EMMS model; Bubble diameter; Bubble wake

. Introduction

In a typical gas–liquid–solid three-phase fluidized bed, solid
articles are fluidized primarily by upward concurrent flow of

iquid and gas, with liquid as the continuous phase and gas as
ispersed bubbles if the superficial gas velocity is low. Because
f the good heat and mass transfer characteristics, three-phase
uidized beds or slurry bubble columns (ut < 0.05 m/s) have
ained considerable importance in their application in physi-
al, chemical, petrochemical, electrochemical and biochemical
rocessing[1]. Intensive investigations have been performed
n three-phase fluidization over the past few decades; however,

here is still a lack of detailed physical understanding and pre-
ictive tools for proper design, scale-up and optimum operation
f such reactors. The calculation of hydrodynamic parameters

n these systems mainly relies on empirical correlations or semi-
heoretical models such as the generalized wake model[2] and
he structured wake model[1]. Though these models are capa-
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ble of successfully elucidating the phenomena occurring in
three-phase reactors, too many parameters in them have l
their practical applications. In recent years, the computat
fluid dynamics (CFD) based on the fundamental conserv
equations has become a viable technique for process simu
[3–7]. Although powerful computer capability is available tod
CFD is very expensive in terms of computer resources and
for full-scale, high-resolution, two- or three-dimensional s
ulation, and it is not readily applicable for routine design
scale-up of industrial-scale units, at least at present. Hence
is a practical need to develop general and simple models fo
three-phase fluidized beds.

Like the gas–solid fluidized systems, flows in the gas–liq
solid three-phase fluidized beds are also characterized by
ture heterogeneity and regime multiplicity due to the com
interactions between phases. For such complex systems
tional constraints for system stability may be indispensab
addition to those for mass and momentum conservation. O
other hand, gas–liquid–solid flow manifests its complex be
ior largely at three different scales, i.e., micro-scale of s
particles, meso-scale of bubbles and bubble wakes, macro
E-mail address: gd jin@home.ipe.ac.cn. of the whole bed unit with the influence of the unit boundary,
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Nomenclature

b width of the bubble (horizontal or major axis of
the bubble)

d3,2 Sauter mean bubble diameter determined by the
maximum stable bubble theory (m)

db mean bubble diameter (m)
Eo Eötvös number,Eo = g(ρm − ρg)d2

b/σ

Esur specific surface energy (J/m3)
fg gas holdup
fw bubble wake holdup
k0 mean relative size of the wake behind a single

bubble (Vw/Vb)
Mo Morton number,Mo = gµ4

l (ρl − ρg)ρ−2
l σ−3

Nd power dissipated in particle collision, circula-
tion, acceleration, liquid viscous dissipation with
respect to unit mass of particles (J/(s kg))

Nsur power consumed for increase of bubble surface
energy with respect to unit mass of particles
(J/(s kg))

Nst power consumed for suspending and transporting
unit mass of particles (J/(s kg))

NT total power consumed with respect to unit mass
of particles (J/(s kg))

Reb gas Reynolds number with the characteristic
length of bubble width,Red = ρlbubµ

−1
l

Red gas Reynolds number with the characteris-
tic length of mean bubble diameter,Red =
ρldbubµ

−1
l

Re∗
g modified gas Reynolds number,Re∗

g = RelUg/Ul

Rel particle Reynolds number,Rel = ρldpUlµ
−1
l

Ta Tadaki number,Ta = RedMo0.25

ub bubble rising velocity (m/s)
ub,i1 gas superficial velocity in inter-phase 1,

ub,i1 = ubfg/(1− fw)
udc particle superficial velocity in the liquid–solid

mixture (m/s)
um,i1 liquid–solid suspension superficial velocity in

inter-phase 1
um,i2 liquid–solid suspension superficial velocity in

inter-phase 2
uw,i2 bubble wake superficial velocity in inter-phase 2,

ub,i1 = ubfw/(1− fg)
ut terminal velocity of a single particle in quiescent

liquid (m/s)
Ud solid superficial velocity (or particle circulating

rate) (m/s)
Ug gas superficial velocity (m/s)
Ul liquid superficial velocity (m/s)
Ulc liquid superficial velocity in the liquid–solid mix-

ture (m/s)
Wst power consumption for suspending and transport-

ing in unit bed volume

Greek letters
εlc liquid holdup in the liquid–solid mixture

(εsc= 1− εlc)
εlw liquid holdup in the primary bubble wake

(εsw = 1− εlw)
εs solid holdup,εs = (1− fg − fw)εsc+ fwεsw
Λ specific area (m−1)
ζ local energy dissipation rate per unit mass of

liquid

and interactions also occur among these different scales. Mean-
while, the multi-scale characteristic of turbulence induced by
liquid shear and rising bubbles extremely complicates the sys-
tem. Solid particles have complex interaction with turbulence
eddies according to particle physical properties such as parti-
cle diameter and density. Turbulences at different scales have
different effects on bubble behaviors, among which the turbu-
lence at the length scale of bubble diameter is responsible for the
bubble size. Therefore, effective analysis of the interactions at
different spatial scales is especially important for appropriately
describing the hydrodynamics in the three-phase flow.

The energy-minimization multi-scale (EMMS) method, orig-
inally developed for describing the gas–solid heterogeneous
flow system by Li and Kwauk[8] and recently validated
through discrete pseudo-particle approach[9], was extended
to gas–liquid–solid three-phase flow system, however, without
consideration of the effects of bubble wakes[10]. In fact, the
hydrodynamics of bubble wake located immediately underneath
the bubble base and rising at almost the same velocity of the bub-
ble is totally different from that of the surrounding liquid–solid
suspension. It has been specially recognized that the bubble wake
is the dominating factor contributing to the intimate liquid/solid
mixing and bed contraction performance[11]. In this study, the
multi-scale resolution with respect to the scales of flowing struc-
tures in the three-phase flow is done with the consideration of
the bubble wake effects. Simultaneously, the turbulent kinetic
e rface
e lling
t
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nergy of the eddies induced by the rising bubbles and the su
nergy are thought to be the dominating factors for contro

he bubble size.

. EMMS model for three-phase fluidized beds

The EMMS model, effective for analyzing gas–solid tw
hase fluidization[8], was generalized by Li and Kwauk[12].

t consists of the following main steps:

Phenomenological resolution with respect to scales of s
tures.
Establishment of conservation conditions with respect to
ferent scales and correlation between different scales.
Identification of dominant mechanisms and formulation
variational criterion to identify what dominates the stab
of structure and what compromise exists between diffe
dominant mechanisms.
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• Integration between conservation conditions with stability
conditions.

The EMMS model for the three-phase fluidized bed in this
study is based on the above principles and the previous study on
three-phase fluidized beds[10].

2.1. System resolution with respect to scales in three-phase
system

Various interactions at different spatial scales occur in the
gas–liquid–solid fluidized beds, including the persistent con-
tacting of the particles and bubbles with liquid; and collisional
interactions between bubbles and particles. The following anal-
yses are based on the main interactions in the gas–liquid–solid
fluidized beds.

Like the gas–solid two-phase system[8], the gas–liquid–solid
system is resolved into a suspending and transporting subsystem
and energy dissipation subsystem. Hence, the total power asso-
ciated with a three-phase system, expressed as power consumed
in a volume containing unit mass of solids,NT, is considered
to consist of the sum of the power for suspending and trans-
porting particles,Nst, and the one purely dissipated in particle
collision, circulation, acceleration, liquid viscous dissipationNd,
and the increase rate of surface energy due to bubble splitting
N
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bubble over it. Thus, eight variables are proposed to describe
such systems,X = (fg, fw, ub, udc, ulc, εlc, εlw, db), wherefg is
the holdup of the bubbles,fw the holdup of bubble wakes,ub
the rising velocity of bubbles and bubble wakes,udc and ulc
the superficial velocity of particle and liquid in the solid–liquid
phase,εlc the liquid holdup in the liquid–solid phase,εlw the
liquid holdup in the bubble wake phase anddb is mean bubble
diameter.

As shown inFig. 1, the interactions occurring in different
phases are micro-scale of particles, meso-scale of bubbles and
bubble wakes, and macro-scale of the whole bed unit, respec-
tively. Micro-scale interaction is concerned with the interaction
between individual particles and the fluid surrounding them.
It is assumed that no particles are present in gas bubbles, and
solid particles and liquid contained in a bubble wake rise at the
same velocity as the bubble above it. Hence, micro-scale inter-
action only exists in the liquid–solid phase which is expressed
as the balance between the drag force and effective gravity
of solid particles. In the liquid–solid phase, the particles are
assumed to be uniformly suspended, and the dilute–dense two-
phase structure and thus the energy dissipation as in gas–solid
system are neglected[8]. The interaction between particles
and liquid in the liquid–solid phase can be described using
the Richardson–Zaki relationship[13]. Meso-scale interactions
are concerned with the interaction of dispersed bubbles and
bubble wakes with the liquid–solid suspension. The former is
e solid
s se is
t phys-
i ction
b com-
p heo-
r tions
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s ter-
a aries
s cro-
s this
s

ng su
sur (NT = Nst + Nd + Nsur).
The overall flow behavior reflects the complex interact

mong the individual phases at different scales. In order to
iently describe the most prominent interaction of solid part
ith liquid, and the interaction of rising gas bubbles and t
akes with the surrounding liquid–solid mixture, the suspen
nd transporting subsystem is further resolved into five ph

he liquid–solid phase, the gas phase, the bubble wake p
ne inter-phase describing the interaction between the r
as bubbles and the surrounding liquid–solid suspension

he other inter-phase describing the interaction between b
akes and the surrounding liquid–solid suspension as s

n Fig. 1. Like the generalized bubble wake model[2], it is
ssumed that the wake rises at the same velocity as that

Fig. 1. Resolution for suspending and transporti
-

:
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xpressed as the force acting on bubbles by the liquid–
uspension through the inter-phase. The liquid–solid pha
reated as a pseudo-homogeneous mixture with the mean
cal properties and averaged velocity. However, the intera
etween bubble wakes and the liquid–solid phase is very
lex, and it cannot be directly expressed with a simple t
etical relationship at present, thus the empirical correla
ased on experiments are used to calculate the wake siz
olid concentration in the primary wake. Macro-scale in
ction occurs between the whole system and the bound
uch as the walls, the inlet and outlet of the bed. This ma
cale interaction will not be dealt with for the moment in
tudy.

bsystem in three-phase system based on different scales.
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2.2. Conservation conditions at different scales

2.2.1. Momentum equation for particles in the liquid–solid
phase

It is assumed that the generalized Richardson–Zaki rela-
tionship is suitable for the uniformly fluidized particles in the
solid–liquid phase. This relationship implies the local balance
among the gravity of particles, the buoyancy force and the drag
force in unit volume of liquid–solid phase[14]:

ulc

εlc
− udc

1 − εlc
= utε

n−1
lc , (1)

whereut is the terminal velocity of the particle in a stable liquid,
and it can be iteratively computed using Eqs.(2)–(4)or obtained
by experimental measurement[8],

ut =
(

4gdp(ρp − ρf )

3ρfCD,p0

)0.5

, (2)

CD,p0 = 24

Ret
+ 3.6

Re0.313
t

, (3)

Ret = ρlutdp

µl
, (4)

andn is Richardson–Zaki index, which depends on the terminal
Reynolds numberRe as follows[13]:

sion
mea
-

se 1
lum

fi-
unit

The efficient weight is balanced by the drag force of the
liquid–solid suspension, thus the momentum equation for bub-
bles can be expressed as

3

4

1

db
CD,b0

(
1 − fg

1 − fw

)m

ρm

(
fg

1 − fw

)
(ub − um)2

= fg(1 − fw − fg)

(1 − fw)2
(ρm − ρg)g, (10)

whereCD,b0is the drag coefficient for a single bubble and defined
as[11]

CD,b0 = max

{(
24

Red
+ 3.6Re−0.313

d

)
,

8

3

Eo

Eo + 4

}
, (11a)

or

CD,b0 = 2.7 + 24

Red
. (11b)

Red is the Reynolds number with the characteristic length of
the mean bubble diameter,Red = ρmdb(ub − um)µ−1

m andEo
is Eötvös number which is defined asEo = g(ρm − ρg)d2

b/σ.
CD,g0(1− fg/(1− fw))m is the drag coefficient for bubbles,
including the effect of bubble swarm.m varies with the bubble
terminal Reynolds number andm = 2 for large bubbles according
to the drift model of Wallis[16].
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n = 4.65 Ret < 0.2

n = 4.4Re−0.03
t 0.2 < Ret < 1

n = 4.4Re−0.1
t 1 < Ret < 500

n = 2.4 Ret > 500

. (5)

2.2.2. Momentum equation for dispersed bubbles in the
liquid–solid suspension

Dispersed bubbles flow through the liquid–solid suspen
which is regarded as a pseudo-homogeneous fluid with a
densityρm, a mean superficial velocityum and an effective vis
cosityµm, which are, respectively, defined as[15]

ρm = ρpεsc + ρlεlc, (6)

um = ρpudc + ρlulc

ρm
, (7)

µm = µl exp

(
εsc

1 − εsc/0.724

)
. (8)

Bubbles interact with the mixture through the inter-pha
in which bubble wakes are not considered, thus the gas vo
fraction is corrected asfg/(1− fw) in this inter-phase. The ef
cient weight (the buoyancy minus weight) of bubbles in
volume of inter-phase 1 is

fg

1 − fw

(
1 − fw − fg

1 − fw
ρm + fg

1 − fw
ρg − ρg

)
g

= fg(1 − fw − fg)

(1 − fw)2
(ρm − ρg)g. (9)
n

e

.2.3. Mean bubble wake size and particle concentration in
he bubble wake

Turbulent bubble wake is unstable and the vortex in it s
ith a certain frequency. In order to quantify the extent of
xchange or interaction of the bubble wake phase with the
ounding liquid–solid mixture in inter-phase 2, two parame
hat is, the wake holdup,fw (or the wake size) and the partic
oncentration in the wake (εsw = 1− εlw) should be determine
ue to the instability of the wake, the wake size is not a
tant but changes continuously with time as a saw-tooth
unction. It is very difficult to directly describe the interact
etween the wake phase and surrounding liquid–solid phas
retically, several models based on experimental observ
r theoretical assumption, such as the saw-tooth wave fun
odel, the bubble wake pendulum model, Hill’s spherical m

11] and the completing spherical model[17] were proposed t
ompute the mean size of the bubble wake. In this study, the
ionship combining two correlations for a steady wake behi
mall bubble at low gas Reynolds numbers and for an uns
ake at higher gas Reynolds numbers according to the

ooth wave function model is suggested to compute the m
elative size of the wake behind a single bubble (k0 = Vw/Vb) in
he three-phase fluidized beds[11],

0 = (200(Reb − 20)−1.12 + 0.24)
−1

. (12)

ote thatReb = bρm(ub − um)µ−1
m and it is defined with a cha

cteristic length of the major axis or width of the bubbleb. It
s more proper to define the gas Reynolds number due t
ubble shape transition apart from a sphere. To relateReb with
ed, the ratio of equivalent diameterdb to b, db/b and the aspe

atio (minor (vertical) axis/major (horizontal) axis)h/b should be
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quantified. The aspect ratio is a function of the Tadaki numberTa,
defined asTa = RedMo0.25, andMo = gµ4

l (ρl − ρg)/(ρ2
l σ

3).
For three-dimensional system, this function is[18]

h

b
=




1 Ta < 1

(0.81+ 0.206 tanh(2(0.8 − log10Ta)))3 1 < Ta < 39.8

0.24 Ta > 39.8

. (13)

For ellipsoidal and spherical-cap bubbles,db/b = (h/b)1/3, thus

Reb = Red
b

db
. (14)

To account for the effect of gas holdup on bubble wake size,
the volume fraction of bubble wakefw can be expressed as

fw = fgk0 exp(−5.05fg). (15)

Solid concentration in the bubble wake increases with the
decrease of particle size and the increase of gas velocity and
liquid viscosity[17,19]. The empirical equation for the average
solid holdup in the primary wake proposed by Kreischer et al.
[19] can be used

εsw = 0.52

(
Red

Ret

)1/8

ε5/4
sc . (16)

2.2.4. Continuity equations for gas, liquid and solid
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However, bubbles are dispersed and do not coalesce until
two bubbles collide and contact for a certain period of time.

In a three-phase fluidized bed, bubble coalescence may occur
according to the mechanisms similar to those in a gas–liquid
system. It is assumed that coalescence happens in three steps
[20]: first, two bubbles collide, trapping a small amount of liq-
uid as a thin film between them. Second, the liquid drains until
the liquid film reaches a critical thickness. Third, the film rup-
tures, leading to the coalescence. Therefore, the coalescence rate
is rated to two key parameters, that is, the collision rate and the
collision efficiency. The collision rate may result from the large-
scale turbulent eddies, the buoyancy and laminar shear. These
mechanisms are cumulative. The collision efficiency is a mea-
sure of what fraction of bubble collisions lead to coalescence
events, and it is a function of the contact time between bubbles
and the time required for bubbles to coalesce[21].

On the other hand, the break-up of bubbles leads to the
increase of specific areaΛ, thus the increase of surface energy
Esur, additional work must be input from the surrounding sus-
pensions. Few theories for bubble break-up in the three-phase
fl olli-
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The continuity equations for gas, liquid and solid are, res
ively,

bfg − Ug = 0, (17)

lc(1 − fg − fw) + ubεlwfw − Ul = 0, (18)

dc(1 − fg − fw) + ub(1 − εlw)fw − Ud = 0. (19)

.3. Bubble size in three-phase fluidization

The multiple dispersed bubbles in the gas–liquid–solid
em are thermodynamically unstable, however, can be m
ained at a dispersed state with a mean bubble diameter d
he balance between the surface energy and the destructi
ulent kinetic energy input from the surrounding suspen
here exists a competitively dynamic process of bubble co
ence and break-up in three-phase fluidized beds.

For spherical bubbles with a given gas holdup in the th
hase system, the specific areaΛ = 6fg/db, and the specifi
urface energyEsur=Λσ = 6σfg/db. Bubble coalescence mea
he increase ofdb and the reducing ofΛ, correspondingly, th
educing of the surface energyEsur, bubble coalescence is thu
pontaneous tendency and the bubble diameter tends to b
s large as possible through coalescence for a multiple-b
ystem, leading to a minimum surface energy,

sur = 6σfg

db
→ Esur,min. (20)

eanwhile, for a given gas holdup, larger bubbles
er a smaller resistance when they go upwards through
iquid–solid mixture.
-

-
to
r-

.
-

e
le

e

uidized bed are available. Except for the bubble-particle c
ion break-up mechanism[22], most of the theories for bubb
reak-up are derived from the theories proposed by Hinze[23]
r Levich [24] for gas–liquid system. Large bubbles may
eformed and ruptured into smaller ones through bubble
ction with turbulent eddies generated in the liquid. The s
f eddies responsible for break-up is equal to or a little sm

han that of the bubble diameter. Large eddies just simply t
ort the bubbles, resulting in random motion of bubbles wit
ausing them break up, while very small eddies do not co
ufficient energy to cause breakage. According to the theo
inze, the disruptive force acting on a bubble due to turbu
uctuations is balanced by stabilizing surface tension. Whe
atio of the two forces exceeds a critical Weber number v
he bubble breaks up,

ec = τ

σ/db,max
, (21)

hereτ is the turbulent stress force of the liquid phase,db,max
he maximum stable bubble diameter andσ is the liquid–gas su
ace tension coefficient. Levich[24] postulates a similar forc
alance between the internal pressure of the bubble an

ace tension of the deformed rather than the spherical bubb
hich the density of the dispersed bubble phase is introd
he critical Weber number for Levich’s theory can be simpli
s

e′
c = τ

σ/db,max

(
ρg

ρl

)1/3

, (22)

hereρl is the continuous liquid density andρg is the disperse
as density.
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The turbulent stress forceτ is characterized by Hinze as

τ = ρlu′2, (23)

whereu′2 is the mean-square spatial fluctuation of liquid veloc-
ity, and it is related to the turbulence kinetic energyk in unit

mass of liquid (k = (3/2)u′2 in isotropic and homogeneous tur-
bulent flow) andk ∝ (lζ)2/3, l is the length scale of turbulence
andζ is the local energy dissipation rate per unit mass of liquid.
Assuming the turbulence is isotropic and homogeneous in the
gas dispersion region and taking the turbulence length scalel as

db,max, Batchelor[25] relatedu′2 to ζ by

u′2 ≈ 2(ζdb,max)
2/3. (24)

Introducing Eqs.(23) and(24) into Eq.(21), one can obtain
the maximum stable bubble diameter according to Hinze’s the-
ory,

dmax =
(

Wec

2

)0.6(
σ

ρl

)0.6

ζ−0.4, (25)

where the critical Webber numberWe′
c is in the range of 1.1–4.7.

Similarly, introducing Eqs.(23) and (24) into Eq. (22), one
can obtain the maximum stable bubble diameter according to
Levich’s theory,

d

( ) ( )

w 5.
bble

d e
r of
b

d

T

red
a ete
f

d

w te
t bub
b ding
s

ζ

I ble-
i uced

turbulence over a broad operating range of gas superficial veloci-
ties[28]. Therefore, it is assumed that the mean size of bubbles is
determined by the turbulent kinetic energy induced by the rising
bubbles. The work done by the net buoyancy force of bubbles
is first converted to the kinetic energy of eddies, that is, the tur-
bulent kinetic energy in the primary wake required to maintain
the vertical/circulating motion in the wake, and subsequently
dissipated into the surrounding mixture as soon as part of the
primary wake sheds into the secondary wake.

The maximum stable bubble diameter theory provides a con-
straint condition for the variation of mean bubble diameter:

db ≤ d3,2. (31)

The equation set including Eqs.(1), (10), (15)–(19)is the con-
servation conditions for the particles, bubbles and bubble wakes.
The seven equations as well as the constraint condition(31)are
not sufficient to determine the stable state of the gas–liquid–solid
system with eight unknowns. Stability conditions for the three-
phase system must be provided.

2.4. Stability conditions for three-phase fluidized beds

In the gas–liquid–solid fluidized bed, particles tend to main-
tain themselves as low as possible in the bed with minimum
potential energy, leading to a maximal particle volume fraction
ε les
a ersed
i ticles
e t liq-
u les.
T ans-
p at is,
W er
t lay-
i each
o ssible
m inu-
o es as
m sta-
b e as
t

N

w rting
a ss of
p
a

2
b

on-
d olid
t lem
w n-
s

max = We′
c

2

0.6
σ0.6

ρ0.4
l ρ0.2

g
ζ−0.4, (26)

here the critical Webber numberWe′
c is in the range of 0.6–1.

In practical application, the most commonly used bu
iameter is the Sauter mean diameterd3,2, which measures th
atio of bubble volume to the surface area for a sampleN
ubbles, and defined as

3,2 =
∑N

i=1nid
3
i∑N

i=1nid
2
i

. (27)

he mean ratio ofd3,2 anddb,max is [26]

d3,2

dmax
= 0.62. (28)

If the effect of the gas holdup on bubble size is conside
ccording to Levich’s theory, the Sauter mean bubble diam

or the three-phase system can be expressed as[27]

3,2 = 1.25

(
σ0.6

ρ0.4
m ρ0.2

g

)
ζ−0.4f 0.37

g , (29)

here the local energy dissipation rateζ is assumed to equa
he rate of work done by the net buoyancy force acting on
les times the relative velocity of bubbles to the surroun
uspension in unit mass of liquid,

= 1

εlρl

fg(1 − fw − fg)(ρm − ρg)g

(1 − fw)2
(ub − um). (30)

n gas–liquid–solid three-phase fluidized bed, the bub
nduced turbulence dominates over the liquid shear-ind
,
r

-

s→ εs,max. The continuous liquid directly contacts partic
nd its drag force balances the weight of the particles imm

t. The dispersed gas bubbles do not directly contact the par
xcept for particle–bubble collision; bubbles directly contac
id and transfer their momentum to liquid to fluidize partic
he fluid motion tends to consume a minimum power for tr
orting and suspending particles per unit bed volume, th
st = Wst,l–s+ Wst,gas→ Wst,min. In most flow regimes, neith

he particles nor the fluid can dominate the other in disp
ng either’s tendency exclusively, they have to compromise
ther in such as way that the particles seek as much as po
inimum potential energy and the fluids (including cont
us liquid and dispersed bubbles) flow through the particl
uch as possible with minimum resistance, leading to the
ility condition for the three-phase fluidized beds, the sam

he gas–solid two-phase flow[8]:

st = Nst,l–s + Nst,gas→ Nst,min, (32)

hereNst is defined as the power consumed for transpo
nd suspending particles in a volume containing unit ma
articles,Nst = Wst/(εsρp). The associated correlations forNst
re listed inTable 1.

.5. Summary of the EMMS model for three-phase fluidized
eds

Integrating the constraint conditions with the stability c
ition, one can get the EMMS model for the gas–liquid–s

hree-phase fluidized bed, which is an optimization prob
ith an objective functionNst→ Nst,minand seven equality co
traints for mass and momentum conservation (Eqs.(1), (10),
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Table 1
Correlations in the EMMS model for three-phase fluidized bed

Liquid–solid phase Bubble/liquid–solid suspension

Slip velocity usc = ulc
εlc

− udc
εsc

usb= ub − um

Drag coefficient for single bubble CD,b0 = max
{(

24
Red

+ 3.6
Re0.313

d

)
, 8

3
Eo

Eo+4

}
Drag coefficient for bubble swarm CD,b = CD,b0

(
1 − fg

1−fw

)2

Momentum exchange coefficient βlc = (ρp−ρl )gεscε
2−n
lc

ut
βint1 = 3

4
CD,bρm

db

(
fg

1−fw

)
(ub − um)

Drag force for particles or bubbles in unit volume Fdp =βscusc Fdp =βint1usb

Suspending and transporting power consumed in unit volume Wst,l–s = Fdpulc Wst,gas= Fdgug
1−fw

Volume containing unit mass of particles 1
εsρp

= 1
ρp((1−fg−fw)εsc+fwεsw)

Suspending and transporting power consumed per unit mass
of particles

Nst,l–s = Wst,l–s(1−fg−fw)
εsρp

Nst,gas= Wst,gas(1−fw)
εsρp

(15)–(19)) as well as an inequality constraint for bubble diame-
ter (Eq.(31)).

3. Model solution and optimal solution

If we select one of the eight unknowns and give it a trial
value in a proper range, for example,fg in the open interval (0,
1), the seven equations is closed for the other seven unknowns.
For every given trial value offg, we can solve the non-linear
equation set established in the above section iteratively, and
if the solution exists, we can compute the value of objective
functionNst. Through this method, we can know the variational
tendencies of all the parameters, as well as the objective func-
tion, and search the optimal solution among all the feasible
solutions.

Fig. 2shows the feasible solutions and optimal solution of a
gas–liquid–solid three-phase fluidized bed. The physical prop-
erties of the gas, liquid, solid and the operating conditions
used are the system 1 listed inTable 2 with Re∗

g = 40 and
Rel = 101.Fig. 2(a and b) are the feasible solutions ofdb andεs
(εs = (1− fg − fw)εsc+ fwεsw), andFig. 2(c and d) are the varia-
tion tendencies of the objective functionNst and specific surface
energyEsur when the gas holdup varies from 0.12 to 0.1 from
right to left, where the dash line inFig. 2(a) is the Sauter mean
diameter determined from the maximum stable bubble theory,
E ined
f o
0 ter
m e
s At
t dup
ε le. A
t d

equates the maximum stable Sauter mean diameter, indicating
the balance of bubble coalescence and break-up, and mean-
while, the objective function reaches its minimum extremum
in the possible range. From point A to left, the mean bubble
diameter obtained from the conservation equation set is greater
than the Sauter mean diameter obtained from the maximum sta-
ble bubble theory and that does not occur in reality. Therefore,
the optimal solution is at point A andfg = 0.102,εs = 0.326 and
db = 0.0063 m.

4. Model solution and validation

In this section, we solve and validate the EMMS model for
three-phase fluidized beds using the experimental data available
in several references which cover a broad range of operating
conditions from the conventional expanded bed to the circulating
fluidized bed.

4.1. Conventional expanded bed

Macchi et al. [29] have carried out experiments in two
gas–liquid–solid systems: an aqueous glycerol solution with
glass beads (system 1) and silicone oil with porous alumina
particles (system 2), with air as the gas phase in both cases. The
physical properties of the materials used and the operating con-
ditions are listed inTable 2. The hydrodynamic similitude is met
i ion-
l

M

R

T
T Ref.29]

ρg

S 015
S 08
q.(29)and the solid line is the mean bubble diameter obta
rom the conservation equation set. Whenfg varies from 0.12 t
.1, from right to left,db is less than the maximum stable Sau
ean diameter, bubble tends to coalesce anddb increases, th

pecific areaΛ and the surface energyEsur thus decreases.
he same time,Nst decreases with the increase of solid hol
s. Therefore, the gas–liquid–solid system tends to be stab
he point A, the solid line intersects with the dash line, andb

able 2
he physical properties of the materials and operating conditions used in[

µl (Pa s) σ (N/m) ρl (kg/m3) ρp (kg/m3)

ystem 1 0.0068 0.067 1128 2230
ystem 2 0.0024 0.0178 953 1881
t

n the two systems, according to the following five dimens
ess groups[30]:

o = g(ρl − ρg)µ4
l

ρlσ3 , Eo = g(ρl − ρg)d2
p

σ
,

el = ρldpUl

µl
,

ρp

ρl
,

Ug

Ul
. (33)

(kg/m3) dp (m) εsmf h0 (m) Ug (m/s) Ul (m/s)

1.2 0.006 0.58 0.52 0–0.06 0.1
1.2 0.0032 0.58 0.52 0–0.047 0.
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Fig. 2. Feasible and optimal solutions of EMMS model for gas–liquid–solid three-phase flow.

Fig. 3shows the gas holdup versus the modified gas Reynolds
numberRe∗

g = RelUg/Ul atRel = 101. The gas holdup increases
with the increase ofRe∗

g in the dispersed bubble regime and the
prediction results well fit the experimental data.

The bed expansion versusRe∗
g is plotted inFig. 4 for the

two systems atRel = 101. The prediction results show that when
gas is first introduced with a small velocity, the bed height col-
lapses rather than expands due to the bubble wake effect. This
may result from two facts. One is that the bubble drags a por-
tion of liquid in the wake out of the bed surface when it comes
out of the bed, making the bed height decrease; the other is
the change of the hydrodynamics because of the introduction
of gas into the bed. At the beginning, gas enters the bed and
occupies only a very little volume; it soon gets a velocity due to
the buoyancy, inducing a portion of liquid in the wake to rise at
the same speed which is faster than that of the surrounding liq-

uid. The rising liquid in the bubble wake makes the surrounding
liquid slow down according to the liquid phase continuity equa-
tion (Eq.(18)). Once the surrounding liquid velocity decreases,
the particles begin to descend according to Eq.(1), making
the bed collapse. At higher gas superficial velocities with the
increase of gas holdup, the bed height begins to expand. As the
experiments were carried out in the high gas velocity region,
Re∗

g > 20, the bed collapse phenomenon was not reported in
Ref. [29].

4.2. Gas–liquid–solid circulating fluidized bed

Liang et al.[31] and Yang et al.[32] have studied the hydrody-
namics and gas–liquid interfacial area in a three-phase fluidized
bed using the tap water and air as the liquid and gas phases,
respectively, and glass beads as the solid phase in a column with
Fig. 3. Gas holdup vs.Re∗
g at Rel = 101.
 Fig. 4. Bed expansion vs.Re∗

g at Rel = 101.
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Table 3
The physical properties of the materials used in Refs.[31,32]

µl (Pa s) 0.001
σ (N/m) 0.072
ρl (kg/m3) 1000
ρp (kg/m3) 2460
ρg (kg/m3) 1.18
dp (m) 0.0004

Fig. 5. The effect of particle circulating rate on the bubble diameter, gas and
solid holdup and gas–liquid specific area.

0.14 m in i.d. and 3.0 m in height. The physical properties of the
materials used are listed inTable 3.

Fig. 5shows the effect of particle circulating rateUd on the
bubble diameter, gas and solid holdup and gas–liquid specific
area. Solid holdup increases with the increase of particle cir-
culating rate, while bubble diameter decreases a little and gas
holdup almost keeps a constant.Fig. 5(c) shows the comparison
between the experimental results and prediction on gas–liquid
specific area[32].

Fig. 6 shows the comparison between the experimental and
prediction results on solid holdup variation with the liquid veloc-
ity [31]. The prediction underestimates the solid holdup a little

Table 4
The physical properties of the materials and operating conditions used in Ref.
[33]

µl (Pa s) 0.001
σ (N/m) 0.072
ρl (kg/m3) 1000
ρp (kg/m3) 2250
ρg (kg/m3) 1.18
dp (m) 0.0013
Gs (kg/m2 s) 14.2

Ug (×102 m/s) 0.329
0.786
1.645

Ul (m/s) 0.142

under the operating conditions, however, within an acceptable
accuracy considering the complexity of the three-phase flow.

Liu et al.[33] have experimentally studied the hydrodynamics
in gas–liquid–solid three-phase flow in a Plexiglas circulating
fluidized bed with a riser 0.076 m in i.d. and 2 m in height and a
downer of 100 mm in i.d. Air and tap water were used as the gas
and liquid phase, respectively, and glass beads were employed
as the solid phase. The physical property of these materials and
the operating conditions are listed inTable 4.

Fig. 7 shows the comparison between the experimental and
the prediction results about the gas, liquid and solid holdup with
the variation of gas superficial velocityUg at the bed height of
1.2 m where the flow is fully developed, the data are the cross-
sectional averaged value of the measurement data in different
radial points. The fitness of the two results is quite good.Fig. 8
shows the holdup of gas, solid, bubble wake and the solid con-
centration in the bubble wake with the variation ofUg. Gas and
bubble wake holdup increase with the increase ofUg, and the
solid holdup increases a little at low gas velocities due to the bub-
ble wake effects and decreases with the further increase ofUg
(see the inset with an enlarged scale), while the solid concentra-
tion in bubble wake increases a little and almost keeps a constant
with the increase ofUg under the experimental conditions.
Fig. 6. Solid holdup under different liquid velocities.
 Fig. 7. Gas, liquid and solid holdup variation withUg.
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Fig. 8. Gas, solid, bubble wake holdup and solid concentration in bubble wake
variation withUg.

5. Conclusions

(1) A multi-scale model for the gas–liquid–solid three-phase
fluidized bed based on the principles of the EMMS model
is developed with the consideration of the bubble wake
effects. For this purpose, the suspending and transporting
subsystem is revolved into five phases, eight unknowns are
proposed to describe such a system, conservation relation-
ships are established under different spatial scales, bubb
diameter is constrained by a critical value,d3.2, obtained
from the maximum stable bubble diameter theory, which
means the surface energy of the bubbles is balanced b
the turbulent kinetic energy of the liquid under a length-
scale of bubble diameter induced by the rising bubbles
In order to obtain the steady state, the stability condition
Nst = Wst/(εsρp) → Nst,min is used, which means the com-
promise of the tendency of particles to maintain a minimum
potential energy (εs→ εs,max) and the tendency of liquid and
gas to consume a minimum power to suspend and transpo
the particles in the bed (Wst = Wst,l–s+ Wst,gas→ Wst,min).

(2) The EMMS model for three-phase fluidized bed is an opti-
mization problem, with an objective function (Nst→ min)
subject to seven equality constraints for mass and momen
tum conservation and an inequality constraint for the mean
bubble diameter.

(3) Solved and validated by the experimental data available
per
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